PIVO ISHLAB CHIQARISHNING DASTLABKI BOSQICHLARI UCHUN BASHORATLI BOSHQARISH TIZIM MODELLARI VA ALGORITMLARI

Authors

  • Yusupov Mirjalol Shovkat o‘g‘li Author

Keywords:

Pivo ishlab chiqarish, zator tayyorlash, bashoratli boshqaruv, holat-fazo modeli, shakar konsentratsiyasi, harorat va pH rostlanishi, energiya samaradorligi.

Abstract

Mazkur tadqiqotda pivo ishlab chiqarishning dastlabki bosqichlari bo‘lgan zator tayyorlash va qaynatish jarayonlari uchun bashoratli boshqaruv tizim modellarini ishlab chiqish va ularning algoritmik yechimlarini yaratish masalasi koʻrib chiqildi. Tadqiqotning asosiy maqsadi shakar konsentratsiyasi, pH va harorat parametrlarini optimal darajada barqaror ushlab turish orqali fermentatsiya jarayonining sifatli va samarali kechishini ta’minlashdan iborat boʻldi. Jarayonni matematik modellashtirish asosida holat-fazo modeli qurildi va u bashoratli boshqaruv algoritmiga moslashtirildi. Olingan natijalar shuni koʻrsatdiki, bashoratli boshqaruv tizimi shakar konsentratsiyasini ±0,1 g/L, haroratni ±0,3 °C, pH ni esa 5,3–5,6 oraligʻida barqaror ushlab turdi. Bu ko‘rsatkichlar an’anaviy PID rostlagich bilan taqqoslaganda yuqori aniqlik va barqarorlikni namoyon etdi. Shuningdek, energiya sarfi 12–15% ga kamayganligi qayd etildi. Natijalar bashoratli boshqaruv tizimining pivo ishlab chiqarish jarayonining dastlabki bosqichlarida samarali qo‘llanishi mumkinligini tasdiqlaydi va amaliyotda sifat ko‘rsatkichlarini oshirish bilan birga resurslardan oqilona foydalanishga imkon beradi.

Downloads

Download data is not yet available.

References

[1] G. G. Hornink, Principles of Beer Production and Enzymes in Mashing, 2nd ed. Alfenas-MG, 2024.

[2] C. W. Bamforth and G. P. Fox, ‘Malting and brewing’, in ICC Handbook of 21st Century Cereal Science and Technology, Elsevier, 2023, pp. 363–368. doi: 10.1016/B978-0-323-95295-8.00013-7.

[3] C. Lasanta, E. Durán‐Guerrero, A. B. Díaz, and R. Castro, ‘Influence of fermentation temperature and yeast type on the chemical and sensory profile of handcrafted beers’, J. Sci. Food Agric., vol. 101, no. 3, pp. 1174–1181, Feb. 2021, doi: 10.1002/jsfa.10729.

[4] A. N. Yusupbekov and M. Sh. Yusupov, ‘DEVELOPMENT OF A MATHEMATICAL MODEL FOR AN INTELLIGENT PROCESS CONTROL

SYSTEM IN BREWING INDUSTRY’, Chem. Technol. Control Manag., vol. 2024, no. 5, pp. 60–62, Oct. 2024, doi: 10.59048/2181-1105.1630.

[5] N. F. Abunde, N. Y. Asiedu, and A. Addo, ‘Modeling, simulation and optimal control strategy for batch fermentation processes’, Int. J. Ind. Chem., vol. 10, no. 1, pp. 67–76, Mar. 2019, doi: 10.1007/s40090-019-0172-9.

[6] J. M. Zamudio Lara, L. Dewasme, H. Hernández Escoto, and A. Vande Wouwer, ‘Parameter Estimation of Dynamic Beer Fermentation Models’, Foods, vol. 11, no. 22, p. 3602, Nov. 2022, doi: 10.3390/foods11223602.

[7] T. Eslami and A. Jungbauer, ‘Control strategy for biopharmaceutical production by model predictive control’, Biotechnol. Prog., vol. 40, no. 2, p. e3426, Mar. 2024, doi: 10.1002/btpr.3426.

[8] E. Bolmanis, K. Dubencovs, A. Suleiko, and J. Vanags, ‘Model Predictive Control—A Stand Out among Competitors for Fed-Batch Fermentation Improvement’, Fermentation, vol. 9, no. 3, p. 206, Feb. 2023, doi: 10.3390/fermentation9030206.

[9] M. Schwenzer, M. Ay, T. Bergs, and D. Abel, ‘Review on model predictive control: an engineering perspective’, Int. J. Adv. Manuf. Technol., vol. 117, no. 5–6, pp. 1327–1349, Nov. 2021, doi: 10.1007/s00170-021-07682-3.

[10] A. Yusupbekov and M. Yusupov, ‘PIVO ISHLAB CHIQARISHDA FERMENTLASH JARAYONINI MODELLASHTIRISH’, Dev. Sci., vol. 3, no. 5, pp.

342–346, 2025.

Downloads

Published

2025-08-27

Issue

Section

Technical Sciences

How to Cite

PIVO ISHLAB CHIQARISHNING DASTLABKI BOSQICHLARI UCHUN BASHORATLI BOSHQARISH TIZIM MODELLARI VA ALGORITMLARI. (2025). Innovations in Science and Technologies, 2(7), 400-407. https://www.innoist.uz/index.php/ist/article/view/1215

Similar Articles

1-10 of 591

You may also start an advanced similarity search for this article.