PIVO ISHLAB CHIQARISHNING DASTLABKI BOSQICHLARI UCHUN BASHORATLI BOSHQARISH TIZIM MODELLARI VA ALGORITMLARI
Ключевые слова:
Pivo ishlab chiqarish, zator tayyorlash, bashoratli boshqaruv, holat-fazo modeli, shakar konsentratsiyasi, harorat va pH rostlanishi, energiya samaradorligi.Аннотация
Mazkur tadqiqotda pivo ishlab chiqarishning dastlabki bosqichlari bo‘lgan zator tayyorlash va qaynatish jarayonlari uchun bashoratli boshqaruv tizim modellarini ishlab chiqish va ularning algoritmik yechimlarini yaratish masalasi koʻrib chiqildi. Tadqiqotning asosiy maqsadi shakar konsentratsiyasi, pH va harorat parametrlarini optimal darajada barqaror ushlab turish orqali fermentatsiya jarayonining sifatli va samarali kechishini ta’minlashdan iborat boʻldi. Jarayonni matematik modellashtirish asosida holat-fazo modeli qurildi va u bashoratli boshqaruv algoritmiga moslashtirildi. Olingan natijalar shuni koʻrsatdiki, bashoratli boshqaruv tizimi shakar konsentratsiyasini ±0,1 g/L, haroratni ±0,3 °C, pH ni esa 5,3–5,6 oraligʻida barqaror ushlab turdi. Bu ko‘rsatkichlar an’anaviy PID rostlagich bilan taqqoslaganda yuqori aniqlik va barqarorlikni namoyon etdi. Shuningdek, energiya sarfi 12–15% ga kamayganligi qayd etildi. Natijalar bashoratli boshqaruv tizimining pivo ishlab chiqarish jarayonining dastlabki bosqichlarida samarali qo‘llanishi mumkinligini tasdiqlaydi va amaliyotda sifat ko‘rsatkichlarini oshirish bilan birga resurslardan oqilona foydalanishga imkon beradi.
Скачивания
Библиографические ссылки
[1] G. G. Hornink, Principles of Beer Production and Enzymes in Mashing, 2nd ed. Alfenas-MG, 2024.
[2] C. W. Bamforth and G. P. Fox, ‘Malting and brewing’, in ICC Handbook of 21st Century Cereal Science and Technology, Elsevier, 2023, pp. 363–368. doi: 10.1016/B978-0-323-95295-8.00013-7.
[3] C. Lasanta, E. Durán‐Guerrero, A. B. Díaz, and R. Castro, ‘Influence of fermentation temperature and yeast type on the chemical and sensory profile of handcrafted beers’, J. Sci. Food Agric., vol. 101, no. 3, pp. 1174–1181, Feb. 2021, doi: 10.1002/jsfa.10729.
[4] A. N. Yusupbekov and M. Sh. Yusupov, ‘DEVELOPMENT OF A MATHEMATICAL MODEL FOR AN INTELLIGENT PROCESS CONTROL
SYSTEM IN BREWING INDUSTRY’, Chem. Technol. Control Manag., vol. 2024, no. 5, pp. 60–62, Oct. 2024, doi: 10.59048/2181-1105.1630.
[5] N. F. Abunde, N. Y. Asiedu, and A. Addo, ‘Modeling, simulation and optimal control strategy for batch fermentation processes’, Int. J. Ind. Chem., vol. 10, no. 1, pp. 67–76, Mar. 2019, doi: 10.1007/s40090-019-0172-9.
[6] J. M. Zamudio Lara, L. Dewasme, H. Hernández Escoto, and A. Vande Wouwer, ‘Parameter Estimation of Dynamic Beer Fermentation Models’, Foods, vol. 11, no. 22, p. 3602, Nov. 2022, doi: 10.3390/foods11223602.
[7] T. Eslami and A. Jungbauer, ‘Control strategy for biopharmaceutical production by model predictive control’, Biotechnol. Prog., vol. 40, no. 2, p. e3426, Mar. 2024, doi: 10.1002/btpr.3426.
[8] E. Bolmanis, K. Dubencovs, A. Suleiko, and J. Vanags, ‘Model Predictive Control—A Stand Out among Competitors for Fed-Batch Fermentation Improvement’, Fermentation, vol. 9, no. 3, p. 206, Feb. 2023, doi: 10.3390/fermentation9030206.
[9] M. Schwenzer, M. Ay, T. Bergs, and D. Abel, ‘Review on model predictive control: an engineering perspective’, Int. J. Adv. Manuf. Technol., vol. 117, no. 5–6, pp. 1327–1349, Nov. 2021, doi: 10.1007/s00170-021-07682-3.
[10] A. Yusupbekov and M. Yusupov, ‘PIVO ISHLAB CHIQARISHDA FERMENTLASH JARAYONINI MODELLASHTIRISH’, Dev. Sci., vol. 3, no. 5, pp.
342–346, 2025.
Загрузки
Опубликован
Выпуск
Раздел
Лицензия

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
License Terms of our Journal