SUN’IY INTELLEKT VA MATEMATIK MODELLASHTIRISHGA ASOSLANGAN RAQAMLI SIGNALLARNI QAYTA ISHLASHDA ILG‘OR SHOVQINNI KAMAYTIRISH USULLARI

Authors

  • Abdubakir Abdullaev Author
  • Xo‘jamiyor Teshaboyev Author
  • Ro‘ziali Sobirov Author
  • Shoxijahon Ahmedov Author

Keywords:

sun’iy intellekt, shovqinni kamaytirish, raqamli signalni qayta ishlash, FIR, IIR, neyron tarmoqlar, adaptiv filtrlar

Abstract

Ushbu maqolada radiokanallardagi shovqin tufayli signal sifatining pasayishi va bit xato darajasi ning oshishi muammosi tahlil qilindi. Shovqin manbalari sifatida termik shovqin, atmosferik shovqin, interferensiya va ko‘p yo‘lli tarqalish effekti ko‘rib chiqilgan. Muammoni yechish uchun matematik modellashtirish, filtrlar va sun’iy intellekt modellaridan foydalanish asosida shovqinli nochiziqli signalini tozalash va original signalni tiklash jarayoni tahlil qilingan. Shovqinli raqamli signalni qayta ishlash va uning sifat ko‘rsatkichlarini yaxshilash maqsadida 1D CNN modeliga asoslangan dasturiy yechim ishlab chiqilgan. Modelning tuzilishi, o‘qitish bosqichlari hamda signalni filtrlash jarayonidagi vizual va miqdoriy natijalari tahlil qilingan. O‘tkazilgan tajribalar asosida taklif etilgan yondashuv bit xato darajasini sezilarli kamaytirishi va radio, mobil aloqa tizimlarida signal sifati oshishiga xizmat qilishimumkinligini keltirilgan.

Downloads

Download data is not yet available.

References

1. Bishop, C. M. (2006). Pattern recognition and machine learning. Springer. https://doi.org/10.1007/978-0-387-45528-0

2. Goldsmith, A. (2005). Wireless communications. Cambridge University Press. https://doi.org/10.1017/CBO9780511841224

3. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. https://www.deeplearningbook.org

4. Haykin, S. (2002). Adaptive filter theory (4th ed.). Prentice Hall.

5. O’Shea, T. J., & Hoydis, J. (2017). An introduction to deep learning for the physical layer. IEEE Transactions on Cognitive Communications and Networking, 3(4), 563–575. https://doi.org/10.1109/TCCN.2017.2758370

6. Proakis, J. G., & Salehi, M. (2008). Digital communications (5th ed.). McGraw-Hill.

7. Simon, D. (2006). Optimal state estimation: Kalman, H infinity, and nonlinear approaches. Wiley-Interscience.

8. Zhang, K., Zuo, W., Chen, Y., Meng, D., & Zhang, L. (2017). Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Transactions on Image Processing, 26(7), 3142–3155. https://doi.org/10.1109/TIP.2017.2662206

Downloads

Published

2025-12-22

Issue

Section

Technical Sciences

How to Cite

SUN’IY INTELLEKT VA MATEMATIK MODELLASHTIRISHGA ASOSLANGAN RAQAMLI SIGNALLARNI QAYTA ISHLASHDA ILG‘OR SHOVQINNI KAMAYTIRISH USULLARI. (2025). Innovations in Science and Technologies, 2(11), 329-338. https://www.innoist.uz/index.php/ist/article/view/1414

Similar Articles

1-10 of 582

You may also start an advanced similarity search for this article.