SUN’IY INTELLEKT ASOSIDA TA’LIM JARAYONLARINI MODELLASHTIRISHNING NAZARIY ASOSLARI
{$ Etel}:
Big Data, oqim ma’lumotlari, ERP tizimi, CRM tizimi, WMS, SAP integratsiyasi, onlayn savdo, stokastik modellashtirish, Markov jarayoni, Bayes tarmog‘i, matematik tahlil, integratsion algoritm, axborot tizimlari, raqamli iqtisodiyot, analitik modellar.Abstrak
Mazkur maqolada katta ma’lumotlar oqimlarini (Big Data Streams) matematik tahlil qilishning nazariy asoslari yoritilgan bo‘lib, u ERP (Enterprise Resource Planning), CRM (Customer Relationship Management), WMS (Warehouse Management System) va SAP integratsion tizimlarida hosil bo‘ladigan axborot oqimlarini matematik modellashtirishga qaratilgan. Tadqiqotning ilmiy asosini ma’lumot oqimlarining stokastik tuzilmasi, vaqtga bog‘liq uzluksiz o‘zgarishlari va hisoblash murakkabligi nazariy jihatdan o‘rganish tashkil etadi. Maqolada ERP– CRM–WMS–SAP tizimlari o‘rtasidagi axborot almashinuvini tavsiflovchi matematik modellar ishlab chiqilib, ular Bayes tarmoqlari, Markov jarayonlari va regressiv tahlil nazariyasi asosida tahlil qilinadi. Onlayn savdo tizimlarida real vaqt rejimida oqayotgan ma’lumotlar uchun integratsion analitik model taklif etilib, u korporativ qarorlarni optimallashtirish, resurslarni taqsimlash va tizimlararo kechikishni minimallashtirish imkonini beradi. Natijada, maqola Big Data oqimlarini boshqarish nazariyasini chuqurlashtiruvchi ilmiy-metodologik yondashuvni taklif etadi hamda O‘zbekistonning raqamli iqtisodiyotida axborot tizimlari integratsiyasining nazariy poydevorini shakllantiradi.
##plugins.themes.default.displayStats.downloads##
Bibliografik havolalar
1. Laney, D. (2023). Big Data: Principles and Best Practices of Scalable Real-Time Analytics. New York: Wiley.
2. OECD. (2023). Data-Driven Innovation for Growth and Well-Being. Paris: OECD Publishing.
3. McKinsey Global Institute. (2024). The State of AI and Big Data Integration in Global Enterprises. New York: McKinsey & Company.
4. O‘zbekiston Respublikasi Prezidentining 2020-yil 5-oktabrdagi PQ–6079-son qarori. “Raqamli O‘zbekiston – 2030” strategiyasi to‘g‘risida.
5. O‘zbekiston Respublikasi Vazirlar Mahkamasining 2024-yil 14-oktabrdagi PQ–358-son Qarori. Sun’iy intellektni 2030-yilgacha rivojlantirish strategiyasi.
6. Han, J., Pei, J., & Kamber, M. (2022). Data Mining: Concepts and Techniques. Elsevier.
7. Laney, D. (2023). Big Data: Principles and Best Practices of Scalable Real-Time Analytics. New York: Wiley.
8. Han, J., Pei, J., & Kamber, M. (2022). Data Mining: Concepts and Techniques. Elsevier.
9. OECD. (2023). Data-Driven Innovation for Growth and Well-Being. Paris: OECD Publishing.
10. McKinsey Global Institute. (2024). The State of AI and Big Data Integration in Global Enterprises. New York: McKinsey & Company.
11. IBM Research. (2022). Markov Modeling in ERP Data Streams. IBM Journal of Research & Development, 66(5), 541–553.
12. Russom, P. (2021). Big Data Analytics: Transforming Business Processes. TDWI Research.
13. Inmon, W. H., & Linstedt, D. (2023). Data Vault 2.0: Building the Next Generation of Data Warehouses. Morgan Kaufmann.
14. Chen, H., & Zhang, X. (2021). Regression Models for Real-Time Data Stream Processing in ERP Systems. Information Systems Research, 32(4), 905–924.
15. Beyer, M. A., & Laney, D. (2023). Information as an Asset: The Gartner IT Management Perspective. Gartner Publications.
16. Gandomi, A., & Haider, M. (2022). Beyond the Hype: Big Data Concepts, Methods, and Analytics. International Journal of Information Management, 50, 448–465.
17. Katal, A., & Wazid, M. (2022). Bayesian Stream Forecasting in CRM Systems. Expert Systems with Applications, 199, 116–130.
18. Gupta, M., & George, J. F. (2023). Integrating ERP and WMS: Mathematical Models for Data Synchronization. Decision Support Systems, 167, 113844.
19. SAP Data Intelligence Platform. (2023). White Paper: Real-Time Stream Processing in Enterprise Analytics. SAP SE, Germany.
20. Zhou, Y., et al. (2022). Differential Modeling of Data Streams in SAP Environments. Journal of Computational Information Systems, 18(6), 212–225.
21. OECD. (2024). Artificial Intelligence and Data Systems for Next-Generation Decision-Making. Paris: OECD Publishing.
22. O‘zbekiston Respublikasi Prezidentining 2020-yil 5-oktabrdagi PQ–6079-son Qarori va 2024-yil 14-oktabrdagi PQ–358-son Qarori. Raqamli iqtisodiyotni rivojlantirish va sun’iy intellekt strategiyasi to‘g‘risida.
23. UNESCO. (2023). Digital Transformation and Knowledge Economy. Paris: UNESCO Publishing.
Yuklamoq
Nashr qilingan
Nashr
Bo'lim
Guvohnoma
" Litsenziyasi "HRTPS://creseekommons.org/licenseommons.org/licens.org/licens.org/licens.org/licens.org/LICS/4.0/"> Litsenziyalarni litsenziyalash "litsenziyalari Axtibatish "(" Attributi ") 4.0 World
. P>License Terms of our Journal