THE ESSENTIAL SPECTRUM OF THE SCHRÖDINGER OPERATOR FOR A THREE-PARTICLE SYSTEM WITH MASSES m1 = M2 = c∞ AND m3 < ∞

Authors

  • Muminov Zahriddin Eshkobilovich Author

Keywords:

Schrödinger operator, spectrum, essential spectrum, Fredholm determinant.

Abstract

 We consider a family of parameter-dependent discrete Schrödinger operators corresponding to the Hamiltonian ofa system of three arbitrary particles (either fermions or bosons) with masses m₁ = m₂ = ∞ and m3 <o, on the integer lattice, Z3. The interactions ofparticles are describedvia zero-range attractive forces. Using the direct-integral decomposition method, the threeparticle problem is reduced to the study of simpler two-particle Schrödinger operators, called the channel (or fiber) operators. Using the channel operators, wefind that the essential spectrum consists of a finite union of real segments.

Downloads

Download data is not yet available.

References

[1] V. N. Efimov, "Weakly-bound states of three resonantly-interacting particles", Sov. J. Nuclear Phys., 12 (1971) 589.

[2] T. Kraemer, M. Mark, P. Waldburger, J. G. Danzl, C. Chin, B. Engeser, A. D. Lange, K. Pilch, A. Jaakkola; H.-C. Nägerl, R. Grimm, "Evidence for Efimov quantum states in an ultracold gas of caesium atoms", Nature, 440 (2006) 315-318.

[3] D. Mattis, "The few-body problem on a lattice", Rev. Mod. Phys., 58 (2), (1986) 361-379.

[4] A. Mogilner, "Hamiltonians in solid-state physics as multiparticle discrete Schrödinger operators: problems and results", Adv. in Sov. Math., 5 (1991) 139-194.

[5] S. Lakaev, "The Efimov's effect of a system of three identical quantum lattice particles", Funct. Anal. Its Appl., 27 (1993) 15-28.

[6] V. S. Rabinovich, S. Roch, "The essential spectrum of Schrödinger operators on lattice", J. Phys. A.:Math. Gen., 39 (2006) 8377.

[7] G. Rozenblum, M. Solomyak, "On the spectral estimates for the Schrödinger operator on Zd, d ≥ 3", J. Math. Sci, 159 (2009) 241–263.

[8] G. Dell'Antonio, Z. I. Muminov, Y. M. Shermatova, "On the number of eigenvalues of a model operator related to a system of three-particles on lattices", J. Phys. A: Math. Theor., 44 (2011) 315302.

[9] H. Isozaki, E. Korotyaev, "Inverse problems, trace fomulae for discrete Schrödinger operators", Ann. Henri Poincaré, 13 (2012) 751-788.

[10] K. Ando, H. Isozaki, H. Morioka, "Spectral Properties of Schrödinger Operators on Perturbed Lattices", Ann. Henri Poincaré, 17 (2016) 2103-2171.

[11] S. N. Lakaev, G. Dell'Antonio, A. Khalkhuzhaev "Existence of an isolated band in a system of three particles in an optical lattice", J. Phys. A: Math. Theor., 49 (2016) 145204.

[12] S. N. Lakaev, S. S. Lakaev, "The existence of bound states in a system of three particles in an optical lattice", J. Phys. A: Math. Theor., 50 (2017) 335202.

[13] S. N. Lakaev, S. K. Kurbanov, S. U. Alladustov, "Convergent Expansions of Eigenvalues of the Generalized Friedrichs Model with a Rank-One Perturbation", Complex Anal. Oper. Theory 15 (2021) 121.

[14] F. Hiroshima, Z. Muminov, U. Kuljanov, "Threshold of discrete Schrödinger operators with delta potentials on N-dimensional lattice", Linear Multilinear Algebra, 70 (5) (2022) 919–954.

[15] Sh. Yu. Kholmatov, S. N. Lakaev, F. M. Almuratov, "On the spectrum of Schrödinger-type operators on two dimensional lattices", J. Math. Anal. Appl., 514 (2022) 126363.

[16] E. L. Korotyaev, "Trace Formulas for Schrödinger Operators on a Lattice", Russ. J. Math. Phys., 29 (2022) 542-557.

[17] G. Graf, D. Schenker, "2-magnon scattering in the Heisenberg model", Ann. Inst. Henri Poincaré, Phys. Théor., 67 (1997) 91–107.

[18] D. Yafaev, Scattering Theory: Some Old and New Problems. Lecture Notes in Mathematics 1735. Springer- Verlag, Berlin, 2000.

[19] S. Albeverio, S. Lakaev, Z. Muminov, "On the structure of the essential spectrum for the three-particle Schrödinger operators on lattices", Math. Nachr. 280, (2007) 699–716.

[20] Sh. Yu. Kholmatov, Z. Muminov, "The essential spectrum and bound states of N-body problem in an optical lattice."J. Phys. A: Math. Theor. 51 (2018) 265202.

[21] S. Albeverio, S. N. Lakaev, Z. I. Muminov, "Schrödinger operators on lattices. The Efimov effect and discrete spectrum asymptotics, "Ann. Inst. H. Poincaré Phys. Theor., 5 (2004) 743-772.

[22] M. I. Muminov, N. M. Aliev, "Spectrum of the three-particle Schrödinger operator on a one-dimensional lattice", Theor. Math. Phys, 171 (3) (2012) 754-768.

[23] Z. I. Muminov, N. M. Aliev, T. Radjabov, "On the discrete spectrum of the three-particle Schrödinger operator on a two-dimensional lattice. "Lob. J. Math., 43:11 (2022) 3239-3251.

[24] Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Vol. IV: Analysis of Operators. Academic Press, New York, 1978.

[25] D. H. Jakubaba-Amundsen, "The HVZ Theorem for a Pseudo-Relativistic Operator", Ann. Henri Poincaré, 8 (2007) 337-360.

Downloads

Published

2025-06-15

Issue

Section

Technical Sciences

How to Cite

THE ESSENTIAL SPECTRUM OF THE SCHRÖDINGER OPERATOR FOR A THREE-PARTICLE SYSTEM WITH MASSES m1 = M2 = c∞ AND m3 < ∞. (2025). Innovations in Science and Technologies, 2(6), 678-687. https://www.innoist.uz/index.php/ist/article/view/1052

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)