www.innoist.uz

DOI: https://doi.org/10.5281/zenodo.17700717

ПРИНЦИП ГРУППИРОВАНИЯ ЗНАЧЕНИЙ ЭФФЕКТИВНЫХ ПАРАМЕТРОВ

¹А. Тургунбаев, ²Х.А. Усманова, ³Н.Е. Шеина

¹и.о проф. Ташкентский государственный технический университет имени И.А. Каримова, Ташкент, Узбекистан. E-mail: <u>asadulla1951@rambler.ru</u>

²PhD. доц. Ташкентский государственный технический университет имени И.А. Каримова, Ташкент, Узбекистан. E-mail: hulkaru0@gmail.com

¹и.о доц. Ташкентский государственный технический университет имени И.А. Каримова, Ташкент, Узбекистан. E-mail: meer.nata@bk.ru

Аннотация: В статье рассматривается принцип группирования значений эффективных параметров как метод анализа и оптимизации технических систем. Представлен подход, основанный на систематизации и классификации параметров по их влиянию на работу изделия или процесса. Рассмотрены критерии выделения групп параметров, методы оценки их значимости и влияния на эффективность функционирования системы. Принцип группирования позволяет упорядочить большое количество исходных данных, выявить ключевые параметры, сократить избыточные вариации и обеспечить целостную оценку характеристик. Применение предложенной методики способствует повышению точности проектирования, упрощению управления технологическими процессами и оптимизации производственных решений.

Ключевые слова: эффективные параметры, группирование параметров, классификация, системный анализ, оптимизация технических систем, метрологическая оценка, управление качеством.

ВВЕДЕНИЕ

Современные технические системы и технологические процессы характеризуются большим количеством параметров, влияющих на их работу и эффективность. В условиях усложнения конструкций, увеличения числа контролируемых показателей и разнообразия технологических условий возникает необходимость системного подхода к анализу и упорядочению этих из эффективных инструментов является параметров. Одним эффективных группирования значений параметров, позволяющий классифицировать и структурировать информацию для последующего анализа и принятия управленческих решений.

Группирование параметров обеспечивает выделение ключевых характеристик, определяющих функционирование системы, сокращение избыточной информации и оптимизацию проектных решений. Применение такого подхода позволяет повысить точность прогнозирования поведения

www.innoist.uz

системы, снизить вероятность ошибок в управлении и обеспечить рационализацию технологических процессов.

Цель статьи заключается в исследовании методов группирования эффективных параметров, определении критериев их классификации и оценке влияния на оптимизацию процессов и повышение качества изделий. Рассмотрены как теоретические основы принципа группирования, так и практические методы его применения в инженерной и производственной практике, что делает данный подход универсальным инструментом анализа и проектирования сложных технических систем.

МЕТОДОЛОГИЯ

Методология исследования направлена на разработку и применение системного подхода к анализу, классификации и группированию значений эффективных параметров технических систем. Основная цель методологии упорядочить большое количество параметров, выявить ключевые характеристики И обеспечить обоснованное принятие проектных управленческих решений.

На первом этапе выполняется сбор и систематизация данных о параметрах системы:

- > измеряемые характеристики технического объекта;
- > параметры, влияющие на производительность, качество и надежность;
- > условия эксплуатации и технологические факторы.

Для этого используются методы наблюдения, инструментальных измерений и анализа существующей документации.

Выделение групп параметров осуществляется на основе следующих критериев:

- > степень влияния параметра на эффективность системы;
- > взаимосвязь с другими параметрами (корреляционный анализ);
- > функциональная значимость и роль в управлении процессом;
- > масштаб вариации и допустимые отклонения.

Это позволяет структурировать параметры по их приоритетности и важности для работы системы.

Принцип группирования значений эффективных параметров используется для сокращения номенклатуры допусков в системе.

Если допуск любого параметра рассчитывать строго по функциональной зависимости, то расчетных ("теоретических") допусков будет столько же, сколько и номинальных значений параметров. Унификация допусков и сокращение их общей номенклатуры вполне возможны за счет объединения близких значений и использования вместо них одного стандартного допуска. Различия между "теоретическими значениями" и выбранным стандартным не должны существенно искажать установленный системой допусков и посадок характер связи между значением допуска и эффективными параметрами.

апробация Многолетняя систем допусков И посадок позволила практически решить вопрос об интервалах эффективных параметров и их "представителях". В любой системе допусков или допусков и посадок ряды образованы учетом эффективных допусков c параметров, сгруппированы в интервалы. Группирование осуществляется так, чтобы допусков на краях интервалов умеренно "теоретических". Границы интервалов приведены в таблицах стандартов с указаниями "до" (приведенное номинальное значение включается в данный интервал) и "свыше" (приведенное значение не входит в данный интервал, и он начинается с любого большего значения).

Интервалы эффективных параметров являются одним из "входов" в таблицу рядов допусков любого стандарта.

АНАЛИЗ И РЕЗУЛЬТАТЫ

Принцип установления уровней относительной точности обеспечивает необходимое разнообразие допусков с сохранением возможности единообразного решения типичных задач функционирования деталей и их изготовления с учетом масштабных факторов.

Для решения различных конструкторских задач необходимы допуски разной точности. Например, точность направляющих станка или измерительного прибора существенно выше точности дверного засова; подшипники шпинделя станка точнее подшипников автомобильных колес и т.д.

Понятие точности геометрических параметров не может рассматриваться как абсолютное. Известна связь допуска со значениями эффективных параметров. Следовательно, можно говорить об установлении в любой системе допусков и посадок уровней относительной точности, которые используются для назначения "одинаково точных" допусков однотипных параметров с разными номинальными значениями.

Уровни относительной точности в различных стандартных системах допусков и посадок называются по-разному. В системе допусков и посадок гладких цилиндрических поверхностей они называются квалитетами, в системах допусков формы и расположения поверхностей, допусков зубчатых колес — степенями точности. Для подшипников качения, допусков несопрягаемых поверхностей ("неуказанные допуски") и некоторых других случаев используют понятие классов точности. Наименование уровней относительной точности зависит от конкретных объектов и сложившихся традиций.

Установленные стандартами уровни относительной точности используются как второй вход в таблицах допусков. Первым входом являются интервалы эффективных параметров, а значение допуска отыскивают на пересечении двух входов в таблицу по принципу "строка-столбец".

Допуски и посадки гладких цилиндрических поверхностей

Расшифровка неизвестного сообщения требует знания использованного шифра или, как теперь чаще говорят, кода. Понятие кодирования применяется

очень широко: кодовые замки, генетический код, кодирование и декодирование сообщений и т.д.

Машиностроительный чертеж тоже является кодированным сообщением о спроектированном изделии. Здесь используется несколько видов кодирования: графическое кодирование для перевода пространственных форм в плоское изображение; символьные коды технических требований (условные обозначения допусков формы и расположения поверхностей, шероховатости поверхностей и т.д.) и буквенно-цифровые коды допусков, посадок, параметров шероховатости и т.д.

Прочесть характер посадки по ее обозначению на чертеже общего вида или сборочном чертеже необходимо для того, чтобы разобраться в работе изделия, поэтому расшифровка таких обозначений должна осуществляться мгновенно, без обращения к стандартам или справочникам. Знание условных обозначений, используемых в чертежах так же необходимо, как знание алфавита при чтении текста.

Расшифровка обозначений допусков и посадок на чертежах не представляет никакой сложности для профессионально подготовленного специалиста, который все принятые условные обозначения читает с листа. Например, технически грамотный механик сразу скажет, что H7/e6 – посадка с зазором, а H7/p6 – с натягом.

Расшифровка кодированных сообщений существенно упрощается при использовании опорных признаков кода. В системах допусков и посадок гладких цилиндрических поверхностей используются общие опорные признаки, на которые необходимо опираться при расшифровке обозначений назначенных норм точности. Более того, эти признаки единообразны для большинства систем допусков и посадок.

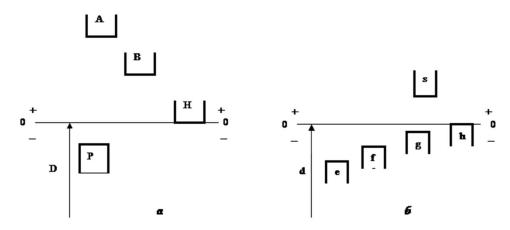


Рис. 1 схемы основных отклонений отверстий (а) и валов (б)

Основные отклонения отверстий обозначают прописными литерами латинского алфавита (A, B, C, D и т.д.), а валов – строчными (a, b, c, d и т.д.). Разные основные отклонения обозначают разными буквами. Обозначения основных отклонений говорят о расположении полей допусков относительно

www.innoist.uz

нулевой линии. Одинаковые отклонения обозначаются одними и теми же буквами, при этом в одном интервале эффективных параметров поля допусков одинаковы, а в разных — отличаются вторым (не основным) отклонением, из-за различных значений допусков.

Допуски (значения допусков, ширина полей допусков) обозначаются числами соответствующих квалитетов, например, H6, H7, H11, H12 означают поля допусков шестого, седьмого, одиннадцатого и двенадцатого квалитетов.

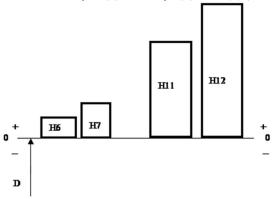


Рис 2. поля допусков с одинаковыми отклонениями и разными уровнями относительной точности.

Основные отклонения, обозначаемые буквами, и допуски, обозначаемые числами, – два независимых составляющих элемента обозначения. У каждого из этих элементов своя роль: буквенное обозначение определяет положение поля допуска, а числовое – ширину поля (они определяют значения допусков указанных квалитетов).

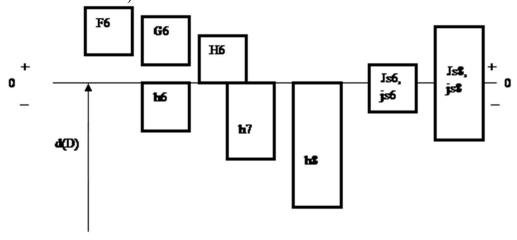


Рис 3. поля допусков с разными основными отклонениями и уровнями относительной точности.

Необходимое разнообразие полей допусков обеспечено возможностью сочетания любых основных отклонений и квалитетов.

Специфичны поля допусков типа js6, Js8, Js9 и т.д. Они фактически не имеют основного отклонения, поскольку расположены симметрично относительно нулевой линии. По определению основное отклонение — это отклонение ближайшее к нулевой линии. Значит, оба отклонения таких специфических полей допусков могут быть признаны основными, что недопустимо. Особое значение имеют основные отклонения Н и h, которые равны нулю. Поля допусков с такими основными отклонениями расположены от номинала в тело детали; их называют полями допусков основного отверстия и основного вала.

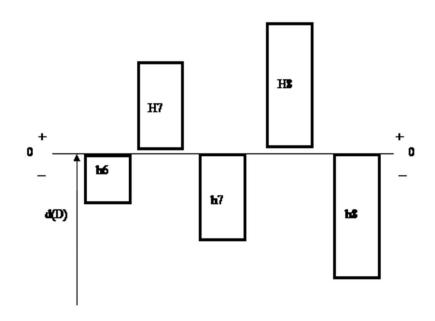


Рис. 4. поля допусков основных отверстий и основных валов разной относительной точности с основными отклонениями (отверстий н; валов h)

Обозначения посадок строятся как дроби, причем в числителе всегда находится обозначение поля допуска охватывающей поверхности (отверстия), а в знаменателе – поля допуска охватываемой (вала).

Системы посадок деталей, образуемые соединением охватывающих и охватываемых поверхностей одного номинального размера с полями допусков в различных сочетаниях, обеспечивают весьма широкие возможности для конструкторов. С другой стороны совершенно необходимо наложение разумных ограничений на применяемую номенклатуру посадок, чтобы проектировщики не устроили калейдоскоп из нескольких тысяч возможных вариантов посадок.

В единой системе допусков и посадок все рекомендуемые посадки построены либо в системе основного отверстия, либо в системе основного вала.

Посадка в системе основного отверстия образуется сопряжением вала, имеющего любое поле допуска, с отверстием, поле допуска которого имеет основное отклонение H (EI = 0). Например, H7/e6, H7/k6 H7/s6.

Посадки в системе основного вала получают при сопряжении отверстия (размер с любым полем допуска) и вала с полем допуска, имеющим основное отклонение h (es = 0). Примеры посадок: G7/h6, K7/h6, P7/h6.

Определить характер стандартной посадки в системе основного отверстия или основного вала по ее буквенно-цифровому обозначению достаточно легко при условии знания расположения основных отклонений. Так поля допусков валов с основными отклонениями a, b, c, cd, d, e, ef, f, fg, g, h в сочетании с полем допуска основного отверстия (основное отклонение H) всегда дают посадки с зазором.

Чтобы выбирать посадки по аналогии, недостаточно знать только характер рекомендуемых стандартом посадок. Общетехнические стандарты редко включают рекомендации по выбору посадок. Конкретные рекомендации приведены в таких областях стандартизации норм точности, как посадки подшипников качения, резьбовые посадки с натягом и переходные. Поэтому для выбора посадок по аналогии приходится использовать дополнительную информацию (собственный опыт проектирования, документация изделийаналогов, учебная и справочная литература). Наиболее широкие возможности для выбора посадок обеспечивает использование справочников, которые содержат множество рекомендаций по выбору посадок для решения типовых конструкторских задач.

Посадки с нулевым гарантированным зазором типа H/h («скольжения») применяют в тех случаях, когда необходимо обеспечить относительное продольное перемещение деталей или поворот их относительно друг друга с небольшой скоростью, например при установочных или регулировочных перемещениях. При сравнительно низких требованиях к точности можно использовать посадку H11/h11, при высоких – H8/h7 или H7/h6.

Посадки с наименьшим гарантированным зазором («движения») используют для обеспечения точного вращения деталей с небольшой скоростью – это посадки типа H/g или G/h. В опорах скольжения, работающих при средних скоростях применяют посадки с несколько большим гарантированным зазором, например, H7/f7 или H8/f8.

При сравнительно невысоких требованиях к точности вращения в сопряжении; для разъемных неподвижных соединений низкой точности при наличии требования легкой сборки и разборки, а также для направляющих скольжения, обеспечивающих свободное перемещение деталей («ходовые» и «широкоходовые»), можно использовать посадки типа H7/e8, H8/e8, а также более грубые, такие как E9/h8, H8/d9, H9/d9 и даже H11/d11.

Все посадки с гарантированными натягами используют для передачи крутящих моментов или осевых сил, либо для неразъемных соединений деталей, которые должны препятствовать относительному перемещению соединяемых деталей под действием моментов или осевых сил.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Исматуллаев П.Р., Матякубова П.М., Тураев Ш.А. Метрология,

- стандартизация и сертификация: Учебник для бакалавров. Т., 2016. 402 с.
- 2. А.А. Абдувалиев. Метрология, стандартизация и сертификация. Учебник для бакалавров. Т., 2018. 624 с.
- 3. Абдувалиев А.А., Латипов В.Б., Умаров А.С., Джаббаров Р.Р., Алимов М.Н., Бойко С.Р., Хакимов О.Ш. Основы стандартизации, метрологии, сертификации и управления качеством. Учебное пособие, Ташкент, НИИСМС, 2007. 555 с.
- 4. Никитин В.А., Бойко С.В. «Методы и средства измерений, испытаний и контроля». Учебник. Оренбург. 2014. 325 с.
- 5. Information Resources Management Association (USA). Standards and Standardization: Concepts, Methodologies, Tools, and Applications Hardcover. Isr. 2015, 1675 pages.
- 6. Гончаров А.А., Копылев В.Д. Метрология, стандартизация и сертификация. Учебное пособие. 2-е издание стереотип. -М.: Изд.центр «Академия», 2015. 400 с.
- 7. Матякубова П.М., Кулуев Р.Р., Шеина Н.Е. Метрология и стандартизация. Учебное пособие-Т:-2023, 312 с.
- 8. Матякубова П.М., Тургунбаев А., Усманова Х.А., Шеина Н.Е. Основы стандартизации: Учебное пособие-Т:-2022,174с.