www.innoist.uz

DOI: https://doi.org/10.5281/zenodo.17700448

ОСНОВЫ СТАНДАРТИЗАЦИИ В ТЕОРИИ

Латипова Н.Х., Марышева Л.Т.

 1 д.т.н. доц. Ташкентский университет информационных технологий Мухаммада аль-Хорезми ,meer.nata@bk.ru

Аннотация: В статье рассматриваются теоретические основы стандартизации как важнейшей составляющей научно-технического прогресса и управления качеством продукции. Раскрывается сущность стандартизации, её цели, задачи и принципы, а также значение в обеспечении единства измерений, безопасности и конкурентоспособности продукции. Особое внимание уделено анализу системы нормативных документов, уровней региональный, (международный, стандартизации национальный, корпоративный) и их взаимодействию. В теоретическом аспекте показана роль стандартизации в формировании технических регламентов, развитии инноваций и интеграции национальных экономик в мировое пространство. Представлены основные подходы к классификации стандартов, их жизненному циклу и методам актуализации. Теоретической базой современной стандартизации является система предпочтительных чисел. Предпочтительными числами называются числа, которые рекомендуется выбирать преимущественно перед всеми другими при назначении величин параметров для вновь создаваемых изделий.

Ключевые слова: стандартизация, нормативные документы, технический регламент, качество, инновации, измерения, безопасность, международные стандарты.

ВВЕДЕНИЕ

В науке и технике широко применяются ряды предпочтительных чисел, на основе которых выбирают предпочтительные размеры. Ряды предпочтительных чисел нормированы нормативным документом, который разработан на основе Современное рекомендаций ИСО. развитие промышленности, машиностроения, приборостроения и других технических без применения научно обоснованных отраслей невозможно стандартизации. Одним ИЗ ключевых инструментов, обеспечивающих систематизацию параметров изделий, унификацию элементов и оптимизацию номенклатуры продукции, являются десятичные ряды предпочтительных чисел. Эти ряды, основанные на принципах геометрической прогрессии, позволяют рационально распределять значения параметров, исключая избыточное их разнообразие и обеспечивая логичность выбора при проектировании и Применение производстве. предпочтительных чисел направлено на

² д.т.н. доц. Ташкентский университет информационных технологий Мухаммада аль-Хорезми, latipova23@rambler.ru

достижение взаимозаменяемости, совместимости и экономической эффективности, что особенно важно в условиях глобализации, интеграции технических требований и необходимости повышения качества продукции. Ряды R5, R10, R20, R40 и другие получили широкое распространение в международной практике, что отражено в стандартах ISO и национальных нормативных документах, включая ГОСТ 8032.

Настоящая статья посвящена рассмотрению теоретических основ десятичных рядов предпочтительных чисел, их математического обоснования, классификации и роли в стандартизации. Особое внимание практическому применению этих рядов в различных областях техники, а также их значению для унификации, рационализации и повышения эффективности решений. Представленные материалы проектных позволяют раскрыть фундаментальность универсальность данного подхода, являющегося неотъемлемой частью современной системы стандартов.

МЕТОДОЛОГИЯ

Методологическая основа данной работы направлена на системное изучение десятичных рядов предпочтительных чисел, их математической природы, нормативной базы и практического применения в стандартизации. В рамках исследования использован комплекс взаимодополняющих методов, обеспечивающих всесторонний и научно обоснованный анализ рассматриваемой темы.

Теоретико-методологический анализ нормативных документов

На первом этапе проведён детальный анализ международных и национальных стандартов, регулирующих построение и применение рядов предпочтительных чисел, включая: ISO 3, ISO 17, ГОСТ 8032 и другие. Изучение нормативной базы позволило определить официальные требования, принципы построения рядов и области их применения.

Математическое моделирование десятичных рядов

Для определения закономерностей формирования рядов использованы методы математического анализа: вывод геометрической прогрессии, расчёт знаменателя прогрессии $q=10^{(1/N)}$, построение экспериментальных рядов, анализ равномерности распределения значений.

Сравнительный анализ рядов разной плотности

Выполнено сравнение рядов R5, R10, R20, R40 по плотности распределения значений, диапазону параметров, степени точности и влиянию на унификацию продукции.

Оценка эффективности применения рядов в стандартизации

Исследовано влияние предпочтительных чисел на рационализацию ассортимента, снижение производственных и логистических затрат, повышение уровня унификации и упрощение проектирования.

Методы структурно-функционального анализа

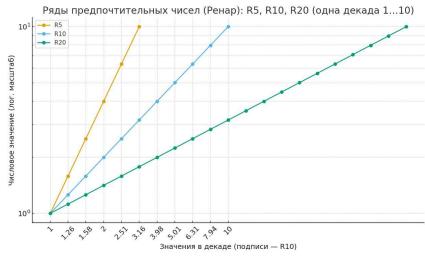
Применены методы декомпозиции параметров изделий, построения иерархий стандартов, моделирования взаимосвязей между номинальными

значениями.

Практическая апробация

Проведены примеры построения рабочих шкал приборов, моделирование ассортимента элементов и оценка сокращения разнообразия продукции при применении предпочтительных рядов.

Предложенная методология сочетает аналитический, математический и практический подходы, что обеспечивает полноту исследования десятичных рядов предпочтительных чисел.


По этому стандарту установлено четыре основных десятичных ряда предпочтительных чисел (R5, R10, R20, R40) и два дополнительных (R80, R160), применение которых допускается только в отдельных, технически обоснованных случаях. Эти ряды построены по геометрической прогрессии со знаменателем φ, равным:

$$\begin{split} \phi &= \sqrt[5]{10} \approx 1,6 & \text{для ряда R5 } (1,00;\,1,60;\,2,50;\,4,00\,\ldots), \\ \phi &= \sqrt[10]{10} \approx 1,25 & \text{для ряда R10 } (1,00;\,1,25;\,1,60;\,2,00\,\ldots), \\ \phi &= \sqrt[20]{10} \approx 1,12 & \text{для ряда R20 } (1,00;\,1,12;\,1,25;\,140;\,\ldots), \\ \phi &= \sqrt[40]{10} \approx 1,06 & \text{для ряда R40 } (1,00;\,1,06;\,1,12;\,1,18\,\ldots), \\ \phi &= \sqrt[80]{10} \approx 1,03 & \text{для ряда R80 } (1,00;\,1,03;\,1.06;\,1,09\,\ldots), \\ \phi &= \sqrt[160]{10} \approx 1,015 & \text{для ряда R160 } (1,00;\,1,015;\,1,03;\,1,045\,\ldots). \end{split}$$

Они являются бесконечными как в сторону малых, так и в сторону больших значений, т. е. Допускают неограниченное развитие параметров или размеров в направлении их увеличения или уменьшения.

Номер ряда предпочтительных чисел указывает на количество членов ряда в десятичном интервале (от 1 до 10). При этом число 1,00 не входит в десятичный интервал как завершающее число предыдущего десятичного интервала (от 0,10 до 1,00).

график рядов предпочтительных чисел (Ренара) R5, R10 и R20 для одной декады (1...10) и сохранил изображение. На рисунке 1 нами показан график предпочтительных чисел.

Рис 1. График рядов предпочтительных чисел (ренара)

Кратко о графике:

- По оси У числовые значения в логарифмическом масштабе (показаны геометрические шаги).
- По оси X позиции элементов в декаде; подписи на осях X отображают значения ряда R10 (для удобства чтения).
- На графике показаны три ряда: R5 (более крупные шаги), R10 (стандартный), R20 (мелкие шаги).

Допускается образование специальных рядов путем отбора каждого 2,3 или n-го числа из существующего ряда. Так образуется ряд R10/3, состоящий из каждого третьего значения основного ряда, причем начинаться он может с первого, второго или третьего значения, например:

```
R10 1,00; 1,25; 1,60; 2,00; 2,50; 3,15; 4,00; 5,00; 6,30; 8,00; 10,00; 12,50
```

R10/3 1,00; 2,00; 4,00; 8,00

R10/3 1,25; 2,50; 5,00; 10,00

R10/3 1,60; 3,15; 6,30; 12,50.

Можно составлять специальные ряды с разными знаменателями геометрической прогрессии φ в различных интервалах ряда. Геометрическая прогрессия имеет ряд полезных свойств, используемых в стандартизации.

АНАЛИЗ И РЕЗУЛЬТАТЫ

Принцип формирования десятичных рядов:

Десятичные ряды предпочтительных чисел базируются на геометрической прогрессии. Между соседними членами ряда поддерживается постоянное отношение, что обеспечивает равномерное распределение значений на логарифмической шкале.

Общее выражение:

$$a_n = a_1 * q^{(n-1)},$$
 где

- a_1 первое число ряда,
- q знаменатель геометрической прогрессии,
- n номер члена ряда.

Для десятичных рядов знаменатель определяется как:

$$q = 10^{(1/N)},$$

где N — количество чисел в декаде (например, 5, 10, 20, 40).

Основные ряды предпочтительных чисел (ISO, ГОСТ)

- Ряд R5 грубая градация (5 чисел в декаде).
- Ряд R10 стандартная градация.
- Ряд R20 тонкая градация.
- Ряд R40 очень тонкая градация.

Ряды предпочтительных чисел закреплены в ISO 3 и ГОСТ 8032.

Применение десятичных рядов в стандартизации

❖ Унификация и рационализация ассортимента

Ряды позволяют исключить избыточное количество вариантов изделий.

❖ Взаимозаменяемость

Стандартизированные значения обеспечивают совместимость деталей.

❖ Экономическая эффективность

Уменьшается складской запас и затраты на производство.

❖ Оптимизация проектирования

Инженеры используют ряды как основу для выбора параметров.

Примеры практического использования

- > Метрические размеры крепежа.
- > Номиналы сопротивлений и конденсаторов.
- > Производство труб и профилей.
- > Формирование шкал измерительных приборов.

Теоретическое обоснование применения

Использование десятичных рядов предпочтительных чисел соответствует принципам оптимизации, взаимозаменяемости, совместимости и системности.

- 1. Относительная разность между любыми соседними членами ряда постоянна. Это свойство вытекает из самой природы геометрической прогрессии. Например, в ряде 1-2-4-8-16-32-64 ... с $\phi=2$ любой член прогрессии больше предыдущего на 100%.
- 2. Произведение или частное любых членов прогрессии является членом той же прогрессии. Это свойство используется при увязке между собой стандартизованных параметров в пределах одного ряда предпочтительных чисел. Согласованность параметров является важным критерием качественной разработки стандартов. Геометрические прогрессии позволяют согласовывать между собой параметры, связанные не только линейной, но также квадратичной, кубичной и другими зависимостями.

По ГОСТ допускается в технически обоснованных случаях производить округление предпочтительных чисел путем применения рядов R' и R'' вместо основных рядов R. В ряду R' отдельные предпочтительные числа заменены величинами первой степени округления, а в ряду R'' - второй степени округления.

В радиоэлектронике часто применяют предпочтительные числа, построенные по рядам Е. Они установлены Международной электротехнической комиссией (МЭК) и имеют следующие значения знаменателя геометрической прогрессии:

для ряда E3
$$\phi = \sqrt[3]{10} \approx 2.2$$
; для ряда E6 $\phi = \sqrt[6]{10} \approx 1.5$; для ряда E12 $\phi = \sqrt[12]{10} \approx 1.2$; для ряда E24 $\phi = \sqrt[24]{10} \approx 1.1$.

При стандартизации иногда применяют ряды предпочтительных чисел, построенные по арифметической прогрессии. Арифметическая прогрессия положена в основу образования рядов размеров в стоительных стандартах, при

установлении размеров изделий в обувной и швейной промышленности и т. п. Иногда используют ступенчато-арифметические прогрессии с неодинаковыми разностями прогрессии. Такую прогрессию образуют, например, монеты достоинством 1-2-3-5-10-15-20 коп.

Для выбора номинальных линейных размеров изделий (диаметров, длин, высот и т. п.) на основе рядов предпочтительных чисел разработан ГОСТ 6636 "Нормальные линейные размеры" для размеров от 0,001 до 100000 мм. Ряды в этом стандарте обозначены как Ra5, Ra10, Ra20, Ra40 и Ra80.

Десятичные ряды предпочтительных чисел являются одним из фундаментальных инструментов теории и практики стандартизации. Их применение обеспечивает рационализацию параметров изделий, сокращает номенклатуру продукции и способствует достижению высокой степени унификации и взаимозаменяемости. Опираясь на принципы геометрической прогрессии, ряды R5, R10, R20, R40 и другие формируют универсальную систему распределения значений, которая доказала свою эффективность в машиностроении, электронике, приборостроении и смежных областях.

Использование предпочтительных чисел позволяет оптимизировать инженерные решения, снизить производственные затраты и обеспечить совместимость элементов в сложных технических системах. Данный подход закреплён международными и национальными стандартами, что подчёркивает его значимость для глобальной гармонизации нормативной документации и развития современной промышленности.

Таким образом, десятичные ряды предпочтительных чисел представляют собой не только математическую модель, но и мощный методологический инструмент стандартизации, обеспечивающий системность, логичность и экономическую обоснованность параметров изделий и технологических процессов. Их применение является важным условием повышения эффективности производства и качества продукции в условиях растущей технологической сложности и потребности в унификации.

ЗАКЛЮЧЕНИЕ

Государственный стандарт предпочтительные на числа общепромышленное значение, и его необходимо применять во всех отраслях народного хозяйства при установлении параметров, числовых характеристик и показателей видов Использование количественных всех продукции. предпочтительных чисел способствует ускорению процесса разработки новых изделий, так как упрощает расчеты и облегчает выбор рациональных параметров и числовых характеристик в процессе проектирования.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Никитин В.А., Бойко С.В. «Методы и средства измерений, испытаний и контроля». Учебник. Оренбург. -2014. -325 с.
- 2. Information Resources Management Association (USA). Standards and

Standardization: Concepts, Methodologies, Tools, and Applications Hardcover. Isr. 2015, 1675 pages.

- 3. Гончаров А.А., Копылев В.Д. Метрология, стандартизация и сертификация. Учебное пособие. 2-е издание стереотип. -М.: Изд.центр «Академия», 2015. 400 с.
- 4. A. Turgunbaev, X.A. Usmanova, N.E. Sheina Metrological and improvement of intelligent sensors on the basis of certification. печатная Technical science and innovation. Tashkent. 2020. №1. PP 160-165. 6 стр.
- 5. А. Turgunbaev , X.A. Usmanova, N.E. Sheina Принципы построения электромагнитных элементов и анализ статических характеристик электромагнитного преобразователя. печатная Инновации в нефтегазовой отрасли. Филиал Российского государственного университета нефти и газа (НИУ) имени И.М. Губкина в г. Ташкенте. ТОМ 3, № 1.2022. стр. 62-69.
- 6. Р.М. Матуакивоva, А. Turgunbaev , Х.А. Usmanova, N.Е. Sheina Поверка и калибровка средств измерений печатная Учебное пособие. Т.: "Фан ва технологиялар нашриёт-матбаа уйи," 2020. 176 стр.
- 7. ISBN 978-9943-6284-0-3. 176 стр.