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Abstract. Skeleton-based human action recognition (HAR), particularly from CCTV 
surveillance footage, has garnered significant interest within the artificial intelligence community. 
The skeletal modality provides a robust, high-level representation of human motion. Prevailing 
methods in this domain predominantly rely on a joint-centric approach, modeling the human body as 
a set of coordinate points. However, this representation often fails to fully capture the rich structural 
and kinematic relationships essential for accurate motion classification. To address this limitation, 
we propose a novel method termed SoftMax with Multi-Dimensional Connected Weights. This 
approach enhances classification by explicitly modeling the informative connections between body 
joints, represented as skeletal edges. We develop an end-to-end deep learning framework that learns 
discriminative spatio-temporal representations directly from sequences of skeleton point vectors 
using Convolutional Neural Networks (CNNs). Results demonstrate that our approach achieves state-
of-the-art performance, underscoring the effectiveness of leveraging skeletal edge information and 
advanced classification techniques for human action recognition. 

Keywords: SoftMax, machine learning, action classification, skeleton motion, human action 
recognition, convolution, deep learning. 

 
 

1. Introduction 
Human action recognition constitutes a fundamental component of various 

computer vision applications, such as surveillance systems [1], human behavior 
analysis [2], and human-robot interaction [3]. Contemporary deep learning methods for 
action recognition primarily focus on learning complex spatiotemporal features from 
video data [4]. In recent years, skeletal representations of human motion, obtained 
either through hardware sensors like Kinect [5] or vision-based pose estimation 
algorithms, have gained considerable research interest due in part to progress in human 
pose estimation [6]. Although skeletal data offers benefits such as compactness and 
robustness to background clutter, effectively capturing discriminative patterns from 
sequential skeleton data remains a challenging task [7]. 

Skeletal data has been widely adopted in action recognition systems, with human 
joint coordinates typically organized into sequences, pseudo-images, or graph 
structures. A variety of neural network architectures have been employed to learn 
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spatiotemporal features from these representations, including recurrent neural 
networks (RNNs) [8], convolutional neural networks (CNNs) [9], and graph neural 
networks (GNNs) [10]. In this work, we focus on skeleton-based pseudo-images as 
input representations and propose a CNN-based framework enhanced with multi-
dimensional connected weights for action classification. We observe that current CNN-
based approaches often overlook kinematic relationships between joints—represented 
as skeleton edges—and predominantly rely on joint coordinate information [11]. 

 
2. Methods 

2.1. The proposed model. The proposed architecture, illustrated in Figure 1, 
features a dual-branch design for the parallel processing of skeletal and video data 
streams. This framework integrates deep supervision to optimize modality fusion, 
addressing a key limitation of conventional methods that often rely on a single modality 
or simplistic feature concatenation. Diverging from such approaches, which frequently 
neglect nuanced cross-modal interactions, our model introduces several key 
innovations. The skeletal branch employs a convolutional neural network (CNN) 
coupled with a self-attention mechanism and a multiconnected SoftMax layer, 
facilitating the dynamic modeling of inter-keypoint dependencies and the extraction of 
complex spatial features. Concurrently, the video processing branch implements a 
slow-fast architecture to enable multi-temporal-scale analysis, thereby enhancing the 
capture of rapid motion patterns. Empirical evaluations demonstrate that the proposed 
network achieves state-of-the-art performance, offering superior multimodal 
integration and significantly improving the accuracy and computational efficiency of 
human action recognition. 

 
Fig. 1. Representations of keypoints. 

 
2.2. Human Skeletal Keypoints. The acquisition of human skeletal data is 

scenario-dependent; it is either provided directly within benchmark datasets or must be 
extracted from raw video using pose estimation algorithms, a process detailed in the 
experimental section. The raw skeletal keypoint data is structured as a three-
dimensional tensor of dimensions (I, V, T), where the first dimension corresponds to 
the spatial coordinate channels (x, y, and, if applicable, confidence score), V denotes 
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the number of defined human keypoints (which is dataset-specific), and T represents 
the temporal length of the sequence, determined by the frame sampling strategy. 

As depicted in Figure 2, two primary representations are employed for skeletal 
sequences: keypoint and bone representations. The keypoint representation utilizes the 
spatial coordinates of each keypoint directly as node features, emphasizing their 
absolute positional information. In contrast, the bone representation defines the 
keypoint with index 0 as a root node. For all subsequent keypoints, a vector is computed 
that represents the directed skeletal segment from the parent keypoint to the current 
one. This vector is set to zero for the root node. This approach explicitly models the 
relational topology of the human skeleton graph. 

To computationally formalize the bone representation, a predefined adjacency 
matrix W is constructed. The elements of W are defined such that for any directed edge 
connecting a parent node to its child, the corresponding matrix element is set to -1. For 
example, given two connected keypoints, 1p  (parent) and 2p  (child), in a single frame, 
the directed bone vector 2e  is calculated as: 

2 2 1e p p   
This operation can be efficiently implemented for the entire graph via the matrix 

multiplication TE P W , where P  is the matrix of keypoint coordinates. 

2 2 1 2 1 2 1 2 1( , , )Te p p x x y y z z         (1) 
Concurrently, the element at the matrix coordinate (2, 1) within W is set to -1 to 

encode this specific directed relationship. The resulting bone representation, computed 
as the matrix product P⋅W, retains the same dimensional structure as the original 
keypoint tensor PP. The final input to the network is constructed by concatenating the 
keypoint (P) and bone (P⋅W) representations along the channel dimension: 

( , * )I Concat P P W       (2) 

where 6I R V T    denotes the concatenation operation, P is the keypoint 
representation, and P⋅W represents the bone linkages. This formulation effectively 
integrates absolute spatial positions with the inherent topological structure of the 
human skeleton, providing a more comprehensive input for subsequent processing. 

To capture elementary motion dynamics, the temporal difference for each feature 
across the temporal dimension T is computed. This differential V, representing the 
change from the previous timestep, is formulated as: 

1t t tV I I    

yielding a resultant tensor  6 1V R V T    . Subsequently, the original input I and 

the temporal differential V are each processed through separate 1×1 convolutional 
layers to project their channel dimensionality to 64, enriching their feature 
representations. The refined feature tensors are thus given by: 

2 1ReLU( (ReLU( )))I W W I                             (3) 

4 3ReLU( (ReLU( )))V W W V                            (4) 

Subsequently, the enriched features from these components are fused through 
element-wise summation to produce an augmented representation: 

Z V I          (5) 
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where 64 .Z R V T    Following this enhancement of the input's representational 
capacity, it is critical to incorporate structural and temporal context, such as spatial 
keypoint indexing and temporal ordering, into the feature ensemble. To this end, one-
hot encodings of the spatial (J) and temporal (T) indices are generated. These encodings 
are then projected into a higher-dimensional latent space using a process analogous to 
that in Eqs. (1) and (2), which involves two 1×1 convolutional layers for feature 
refinement. This yields enriched representations 64J R V T    and 128 .T R V T    

Finally, these contextual features are concatenated with the motion-augmented 
features Z along the channel dimension: 

 , ,Z Concat Z J T         (6) 

This integration consolidates motion, spatial structure, and temporal context into 
a unified representation. This concludes the input encoding process, resulting in a 
tensor Z′ with a channel dimension of 256. This final encoded representation is then 
propagated to the self-attention convolutional module for subsequent skeletal feature 
extraction. 
2.3. Convolutional network module 

In CNN, integrating a self-attention mechanism is essential for dynamically 
inferring the adjacency matrix and its corresponding edge weights. Unlike 
conventional CNNs that utilize a fixed, predefined adjacency matrix to model node 
relationships, the self-attention mechanism adaptively recalibrates these relational 
weights based on data-driven similarity measures. This facilitates more flexible feature 
propagation and information aggregation across the graph. 

The mechanism operates by quantifying the pairwise affinities between joints 
(nodes) and assigning a weight to each pair. These weights dictate the influence 
between nodes during the message-passing phase. A key advantage of this approach is 
its ability to capture long-range dependencies; even joints without a direct physical 
connection can exhibit strong latent associations, which are amplified through self-
attention. Consequently, the model can emphasize dynamic interactions between joints 
during critical action segments (e.g., periods of rapid motion) as well as subtle 
correlations between less active joints, thereby enhancing the overall understanding of 
action patterns. 

The self-attention mechanism, widely adopted across domains, computes a 
representation for each feature as a weighted sum of all features. The general 
formulation is: 

   
1

, ,
L

i i
i

Attention Query Source Similarity Query Key Value


    (7) 

where Similarity is a trainable function that calculates affinity scores. In self-attention, 
the Query, Key, and Value are all derived from the same input source. 

The specific architecture implemented here is designed within a neighborhood 
graph framework, customized for skeletal data. An initial undirected graph is first 
oriented into a task-specific directed graph to better model informational flow. 
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The input to this module is a feature tensor of dimensions C×T×V, which 
provides the sources for the Query, Key, and Value. The similarity matrix function f(x), 
corresponding to the Similarity term in Eq. (1), is defined as: 

     ( )f x softmax x x  •
     (8) 

Here, θ(x) and ϕ(x) are linear transformations (implemented via 1×1 
convolutions) applied to the Query and Key projections, respectively, and T denotes 
the transpose operation. The dimension C represents the number of input channels. 

 
Fig. 2. Self-attention block. 

 
The output of the self-attention block is formally defined by the operation: 

     ( ( ) )y x ReLU h f x g x x    

where x and y(x) represent the input and output feature maps, respectively. The 
function g(x) applies a 1×1 convolution to the Value pathway to enhance its 
representational capacity. The function h(x) employs another 1×1 convolution to 
project the aggregated features to the desired output dimension, and the term +x 
denotes a residual connection. 

This self-attention module can be interpreted as a form of CNN. In standard 
CNNs, the adjacency matrix is a static, binary matrix (with values 0 or 1) defining 
connections between nodes. In this formulation, the learned similarity matrix f(x) 
functions as a dynamic, weighted adjacency matrix, where the values are continuous 
and data-dependent. 

For skeletal data, the spatio-temporal self-attention module is designed to model 
both the spatial correlations between joints and their temporal kinematics. In contrast, 
for video data, the corresponding module focuses on integrating multi-scale temporal 
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features to capture the dynamics of motion at different speeds, thereby improving 
recognition robustness. 

The adjacency matrix and its weights in this architecture are dynamically 
generated by the self-attention mechanism, confirming its characterization as a CNN. 
The resulting adjacency matrix is inherently asymmetric, indicating a directed graph 
structure. 

The computational complexity of the self-attention mechanism is primarily 
governed by the matrix multiplication required to compute the similarity matrix. To 
alleviate this cost, a more efficient spatial self-attention module was adopted. This 
design reduces computational burden by applying self-attention only in the spatial 
dimension, while temporal feature integration is handled by a parallel branch consisting 
of a simple 3×1 temporal convolution, which is then combined via the residual 
connection. 

Empirical results indicate that the architecture in model achieves higher accuracy 
with reduced computational demands. Consequently, this design was selected for our 
final model. The channel dimension 1C  within the module was set to half the input 
channel size to further minimize computational overhead. The final output channels of 
the convolutional modules in the skeletal branch (Figure 1) are configured as 128, 256, 
256, and 512. 

3. Experiment 
3.1. Datasets. We evaluate the performance of our proposed method on two 

widely-used benchmark datasets for human action recognition: PennAction and CSL. 
This section first provides a brief introduction to these datasets and outlines the 
experimental setup. We then present extensive experimental results and a comparative 
analysis against current state-of-the-art methods. Finally, we perform detailed ablation 
studies to examine the contribution of each component in our proposed framework and 
discuss potential directions for future improvement. 

3.1. Datasets. PennAction. This dataset contains 2,326 video sequences, 
sourced from YouTube, representing 15 different action categories (e.g., "baseball 
pitch," "bench press," "strum guitar"). Each frame is annotated with the 2D coordinates 
of 13 human body joints; however, occlusions frequently result in missing joint 
annotations across frames. We adhere to the standard evaluation protocol outlined in 
[33], using 50% of the videos for training and the remaining 50% for testing. The 
dataset presents significant challenges due to frequent occlusions and large variations 
in subject scale and viewpoint. 

Table 1. 
Action recognition performance on the PennAction dataset. Results are reported for 

models using skeletal data extracted via pose estimation algorithms. 
Method Pose recognition (%) 

Bilinear C3D 97.10 
HDM 93.40 
MDL 98.60 
Heapmap 98.22 
RPAN 97.40 
SoftMax classifier 85.64 
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NN 90.23 
CNN 91.25 
CNNSoftMaxMCW 98.25 

 
CSL. The CSL (Chinese Sign Language) dataset is a large-scale corpus 

containing 500 frequently used words, with each word performed 5 times by 50 
different signers, resulting in a total of 125,000 video samples. In line with the 
established evaluation methodology, we partition the data at the signer level: samples 
from 36 signers are used for training, and samples from the remaining 14 signers are 
held out for testing, ensuring a person-independent evaluation. 

Table 2.  
Results on CSL dataset, skeleton obtained by pose estimation algorithm and pose 

recognition. 
Method Pose recognition (%) 

Bilinear C3D 96.23 
HDM 93.40 
MDL 98.60 
Heapmap 98.22 
RPAN 97.40 
SoftMax classifier 85.64 
NN 90.23 
CNN 91.25 
CNNSoftMaxMCW 98.71 
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